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ABSTRACT

Expressions for the wave-energy density and wave-momentum density
of each species of a collisionless plasma are devived. The sum of the
wave~energy (momentum) densities of all the species and the electromag-
getic energy (momentum) density gives the previously known result for

the total wave-energy (momentum) density of a dispersive medium.



I. INTRODUCTION

Expressionsleg for the wave-energy density and wave-momentum
density of a dispersive medium have been applied to a number of problems.
The sign of the wave energy can be used to determine whether coupled
waves are explosively unstablec6 The ponderomotive force density
acting on a medium can be deducedg’g from the knowledge of the wave-
energy density and wave-momentum density. In addition, Nevins10 has
shown that particle transport, caused by trapped particle instabilities,
can be explained by the increase in the wave-momentum density as the
unstable wave grows.

In & collisionless plasma, the quantities of concern for each of
the above questions can be divided into contributions from the separate
plasma species. One may wish to know which species causes a wave to
have negative energy, how much of the ponderomotive force density acts
on the ions and how much acts on the electrons, or the relative amounts
of ion and electron transport caused by an instability. To answey

6,8-10
one

these questions by the methods of the previous analyses,
first needs to know the wave-energy density and wave-momentum density
of the individual species.

The purpose of this paper is to derive the contributions of the
separate species to the wave-epergy density and wave-momentum density
of the medium. This we do under the following assumptions: (1) The
electric field is small. Hence, linear theory is valid. (2) The
electric field has the wave packet form, i:e., it is the product of a
slowly varying amplitude with a plane wave. (3) Dissipation is small.

(4) The plasma is collisionless. Upon obtaining these expressions for

the wave-energy and wave-momentum density, we note that they and the



. , . ) . ; 3 )
elecirvomagnetic contributions sum to give the previously known™ formulas
for the total wave-energy density and wave-momentum density of the

medium.



II. WAVE-ENERGY DENSITY AND WAVE~MOMENTUM DENSITY OF THE SEPARATE
SPECIES OF A COLLISIONLESS PLASMA
We consider a homogeneous, multispecies plasma under the influence
of a small electric field. In this case, the current response of each

species is given by a separate conductivity:
8 s
I (k,w) = g (k,w)E(k,w) . (1)

In addition, we follow Ber53 in assuming that the electric field is the

product of a slowly varying amplitude and a plane wave,

E(x,t) = g(ﬁ,t)exp(iggeéwiwot) + c.c. (2)

Furthermore, we assume dissipation to be small. TFinally, we assume the
plasma to be collisionless, so that a given species can obtain energy
and momentum only from the macroscopic electromagnetic fields. Under
these conditions we derive local conservation laws for the energy and
momentum of each species, theréby obtaining the wave-energy density and
wave-momentum density of the separate species of a collisionless plasma.

In order to derive these local conservation laws, we must first
find local relations between the electric field and the current density
of species s. To do this, we fourier transform Eqs. (1) and (2) to

obtain

(3)

and



5 =i(kex-wt)
E(k,w) = %gfd”xdte E(x,t)
= E(k-koww ) +E (ko ,who ) . (4)

(In this expression, gw(gsw) denotes the fourier transform of §W(§,t),
not the complex conjugate of E(k,w).) Insertion of Eq. (4) into Eq. (3)

now yields

s 1 5 i(keg-wt)
J7(x,t) = — d kdw e o (§9w)°§(§«50,wmwﬂ) + c.c. (5)

This integral is calculated by changing the integration variables to

(k,9) = (k-kg,w-w,) and expanding g(k,w) about the point (k,,w,). The
result is
n
s 3 — 1 ?;__ 8 ) iﬁ @KM
L0 = nt <l It ow 9x 3k }
0 ~ TR0
S .
ii (;}309w0) E(Zﬁyt? + c.cC. (6)

At this point, we invoke the assumption that E(x,t) varies slowly.
This allows us to neglect the higher dexivatives in Eq. (6), thereby

obtaining

s _ ik 9 8 .8 .9 \[ls o
fg (,;%ft) = e <1 + 1 "5{ ”’é{u”;)" = 1 5}5 ggoéég; {,%Sgsw@) E(;}S?t>}
+ c.c. , (7)

a local relation between gs and E.



By the same procedure, we can obtain a relation between the external
charge density and the electric field, using ps = 50£S/w3 and a relation

between the magnetic field and the electric field, using B = ckxE/w:

ik, x-w.t)
s _ MEptETy 8 9 .8 .9 s ,
prx,t) = e <1 T Bw, 8% 850> <‘§0 g (kg ywp) ﬂ&””o}
+ ¢.c. (8)_

and

ik, x-w_t)
_ tkgrrnw, 5 09 .9 @
B(x,t) = e <1 tigre 1 5% "‘“agj{ci}ioxg(%’t)/wo}

+ c.c. (9)

With these expressions in hand, we proceed to calculate the average
rate at which species s gains energy. In the absence of collisions,
species s gains energy only from the electric field. Hence, the average
rate at which energy is transferred to species s per unit volume is
given by <§(§,t)°gs(§,t)>. (The brackets refer to the time averaged
part of the quantity.) From Eqs. (2) and (3), we find the following

relation for this quantity:

5

<Er37> = 2E (x,t)-0p (kg wy) E(x,t)
o 8 S * s
) <§£ du, gg}é (,) 0, (ky,wy) E(,%»t)}

= o 3 o 9
+ E%E (x,t) §§E 555 - §g 350§§6 (k O) Q(g,t)}+coc,j , (10)



where we have introduced the hermitian and antihermitian parts of the
I 5 _ .S .8 o - , .
conductivity, g = g, + ig, - At this point, we invoke our last assump-

tion, that the dissipation is small. This allows us to neglect the

last term of Eq. (10) in comparison to the second, thereby obtaining

.5 T -
<Ko > = o I
E-J 2§ (X?t),gh<io?w0) g(x9t)

Lot du, § £ (x,0)50, (ky,wy)-ECx,t)
g \
9 o [, s o
B T U AT ¥ é(i’?>? : (11)

Equation {11) is an energy conservation law for species s. The
left side of the Eq. (11) dis the rate at which energy is transferred to
species s per unit volume. The first term on the right side of £g. (11)
is the rate at which species s dissipates energy per unit volume. If
we neglect this term and integrate Eq. (11) over space and time, we
find that the total energy received by species s is given by the spatial

integral of
W= - g 55*(X ) o (ko w ) E(x,e) . (12)
ow - i g S o’ VESE)

B . . - . .y i
Hence, W is the wave-energy density of species s. Finally, the last
term of Eq. (11) is the divergence of the energy flux of species s:

/
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In order to compare Eg. (12) to previocus work, which we will do momen=

. " . ety 3 . .5
tavily, we rewrite Eq. (12) in texms of the susceptibility, Xé = 4ricT fw:

[



s o1 8 [~ Yen v ) :
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By a similar analysis, we find the rate at which momentum is

transferred to species s per unit volume:
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(The arguments of the functions atre the same as in the previous equations.)

We therefore conclude that the wave-momentum density of species s 1s given

by
[k
S oy o 1 i~0 2 [ 2% s 1 - 1 % s E
€060 = s ma (ot ;(hé} o S8 Xnko T B ko xRl
0 | 0 0 j
0
(16)
and the wave-momentum flux tensor is given by
7
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To correlate the present results with previous work, we note the

L *° S° - .ko s., *e s 5 ';’fg

following. If one sums the wave-energy density, as given by Egq. (14),

of all the species and the electromagnetic energy density, <EZ+BQ>/SH,

one finds that the total wave-energy density is given by



W= %% gag égﬁ(§9t)°wggh(ko,wo)°§(§,t)} ) (18)
where g(g,w)ﬁg(Z@kzcz/wz) + ggcz/wz + ;gs(gﬁw) is the dispersion tensor.
This result is equivalent to the result of Bers (ref. 3, p. 128) for
the total energy density of a dispersive medium. Similarly, if one
sums the wave-momentum density, as given by Egq. (16), of all the species
and the electromagnetic momentum density, <EXB>/4nc, one finds that the

total wave~-momentum density is given by

k
L0925y ) o L ok - ¥y .
e k|70 5 (B ) - b E ek - - Eke, 19
W 0 0 0

This result is equivalent to the result of Bers {(ref. 3, p. 132)
for the total momentum density of a dispersive medium. Analogous
statements apply to the energy flux density and the momentum flux

density.



IXI. AN ILLUSTRATION

As an illustration of these ideas we consider the generation of
longitudinal drift waves in an electron-ion, low-B plasma with density
gradient in the x-direction, with magnetic field in the z~direction,
and with both species having small thermal velocities. In this case

the longitudinal susceptibility of species s is given byll

2 2
wok Kol § wnSE
x = -S¥ .8 f; ns} (20)
s szsw 2 w

where W, is the plasma frequency of species s, QS is the gyrofrequency
(including the sign) of species s, wnSEKkyTSc/eSBO is the drift frequency,
and Kéna]dn/dx. Using Eq. (14), we note that the sign of the energy

density of species s must equal the sign of the quantity

w 2wns>
<1 el . (215

[
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1< . (22)

holds.
To be specific, let us examine the case ky > 0 and, thus, w . >0
and w oo < 0 hold. In this case, the electrons have negative wave

energy for

w o <w <0, (23)

=1(0=



and the ions have negative wave energy for
2w . > w >0 . (24)
oi

Hence, unstable waves with negative phase velocity, w/ky < 0, are due
to the pegative wave energy of the electrons. Unstable waves with
positive phase velocity are due to the negative wave energy of the

ions.
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